63 research outputs found

    Land cover changes since the 19th century detected from historic maps for environmental applications: toward a “CORINE 1800” project?

    Get PDF
    The value of cartographic heritage for environmental applications is demonstrated with a test case in the Central Italian Alps. Land cover changes since the early 19th century are detected from sample maps of the Second Military Survey of the Habsburg Empire in Lombardy (1818-1829), available on the portal www.mapire.eu. They are compared with 1954 areal sur-veys and successive land cover classification until 2018. Issues as land use classes homogeni-zation, data vectorization, georeferencing errors are addressed. The dynamics of main land cover classes (woods, bush, meadows, crops) are investigated on sample areas and the potential use of this exercise for hydrological applications is explored. In fact, the impact of the observed natural afforestation on changes in hydrological losses due to evapotranspiration and its influ-ence as a likely cause for the decrease in runoff monitored since 1845 in the Adda river basin and needs to be assessed in a systematic way. The proposed test case can pave the road for a project extended at European scale, a sort of “CORINE 1800 land cover” Geographic Infor-mation System, which could have several environmental, cartographic and socio-economic ap-plications

    Detailed kinetics of pyrolysis and combustion of catechol and guaiacol, as reference components of bio-Oil from biomass

    Get PDF
    Fast biomass pyrolysis is an effective process to produce bio-oils thus allowing to partially replace nonrenewable fossil fuels. Bio-oils are complex mixtures with a great amount of large oxygenated organic species, such as substituted phenolic components. Although experimental and kinetic modeling studies of phenol and anisole pyrolysis and combustion are available in the literature, only a minor attention has been devoted to kinetic mechanisms of substituted phenolic species, such as catechol and guaiacol. Multiple substitutions on aromatic ring can originate proximity effects and thus significantly modify bond energies, consequently affecting reaction pathways. Careful evaluations of bond dissociation energies and reference kinetic parameters, based on theoretical computations, are first performed. Guaiacol and catechol pyrolysis and combustion reactions are then compared with the corresponding phenol and anisole mechanisms. This kinetic study allows to identify some preliminary rate rules useful to validate a detailed kinetic mechanism of bio-oil pyrolysis and combustion

    The eIDAS Regulation: A Survey of Technological Trends for European Electronic Identity Schemes

    Get PDF
    The eIDAS regulation aims to provide an interoperable European framework to enable EU citizens to authenticate and communicate with services of other Member States by using their national electronic identity. While a number of high-level requirements (e.g., related to privacy and security) are established to make interoperability among Member States possible, the eIDAS regulation does not explicitly specify the technologies that can be adopted during the development phase to meet the requirements as mentioned earlier. To the best of our knowledge, there is no work available in the literature investigating the technological trends within the notified eIDAS electronic identity schemes used by Member States. To fill this gap, this paper analyzes how the different technological trends of notified schemes satisfy the requirements of the eIDAS regulation. To do this, we define a set of research questions that allow us to investigate the correlations between different design dimensions such as security, privacy, and usability. Based on these findings, we provide a set of lessons learned that would be valuable to the security community, as they can provide useful insights on how to more efficiently protect interoperable national digital identities. Furthermore, we provide a brief overview regarding the new eIDAS regulation (eIDAS 2.0) that aims to provide a more privacy-preserving electronic identity solution by moving from a centralized approach to a decentralized one

    Mechanism Comparison for PAH Formation in Pyrolysis and Laminar Premixed Flames

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are known precursors of harmful carbonaceous particles. Accurate predictions of soot formations strongly rely on accurate predictions of PAHs chemistry. This work addresses the detailed kinetic modeling of PAH formation using two models: CRECK [8] and ITV [12], aiming to compare the model predictions with experimental data in olefin pyrolysis and laminar premixed flames. The two kinetic mechanisms are validated and compared highlighting similarities and differences in PAHs formation pathways. The validation highlights the critical role of resonance-stabilized radicals leading to the PAH formation

    Experimental and kinetic modeling study of pyrolysis and combustion of anisole

    Get PDF
    open7siFast biomass pyrolysis is an effective process with high yields of bio-oil, and is a promising technology to partially replace non-renewable fossil fuels. Bio-oils are complex mixtures with a large amount of oxygenated organic species, such as esters, ethers, aldehydes, ketones, carboxylic acids, alcohols, and substituted aromatic components. Anisole is a simple surrogate of primary tar from lignin pyrolysis and it is very useful to investigate gas-phase reactions of methoxy-phenol species, expected precursors of poly-cyclic aromatic hydrocarbons (PAH) and soot during biomass pyrolysis and bio-oil combustion. This work first presents new pyrolysis data obtained in the Ghent flow reactor, and then it discusses a detailed kinetic mechanism of anisole pyrolysis and oxidation. This scheme is further validated and compared, not only with these pyrolysis data, but also with recently published data of anisole oxidation in jet stirred reactors. Ignition delay time and laminar flame speed computations complement these detailed comparisons. This kinetic mechanism is a first step and places the basis towards a successive model extension to catechol, guaiacol, and vanillin, as representative phenolic components of bio-oil from biomass.openPelucchi, Matteo*; Faravelli, Tiziano; Frassoldati, Alessio; Ranzi, Eliseo; SriBala, Gorugantu; Marin, Guy B.; Van Geem, Kevin M.Pelucchi, Matteo; Faravelli, Tiziano; Frassoldati, Alessio; Ranzi, Eliseo; Sribala, Gorugantu; Marin, Guy B.; Van Geem, Kevin M

    An experimental and kinetic modelling study of n-C4C6aldehydes oxidation in a jet-stirred reactor

    Get PDF
    In recent years a few experimental and kinetic modelling studies have been devoted to the understanding of the oxidation chemistry of aldehydes, because of their importance as intermediate and product species in alkane and biofuel oxidation. In this work, new jet-stirred reactor experimental data are presented for n-butanal and n-pentanal, extending the availability of targets for kinetic model validation. Consistently with previous detailed measurements on n-hexanal oxidation, experiments have been carried out for both fuels over the temperature range 475-1100 K, at a residence time of 2 s, pressure of 106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (ϕ = 0. 5, 1 and 2). A recently published literature model by Pelucchi et al. was used to interpret these experiments. The assumption according to which most of the Cnaldehyde reactivity is controlled by the low-temperature branching pathways of the Cn-1alkyl radical, allows good agreement between experiments and model in terms of fuel conversion and for most of the detected species. The systematic and comparative analysis here presented for C4C6linear aldehydes further constrains the general rate rules, applicable to the description of higher molecular weight aldehydes, which can be produced from heavier alcohols (n-pentanol, n-hexanol etc.) and fossil fuel oxidation

    Characterization of a debris flow event using an affordable monitoring system

    Get PDF
    This study presents monitoring data of a debris flow event in the Central Italian Alps. The debris flow occurred on August 16, 2021 in the Blè basin (Val Camonica valley, Lombardia Region) and was recorded by a monitoring station installed just few weeks before. The monitoring system was deployed to document the hydrologic response of the catchment to rainfall, and was designed to be lightweight, relatively cheap, and easy to deploy in the field. To this purpose, we combined video cameras with geophysical sensors (geophones and infrasound) and optimized the power supply system. The data recorded during the event allowed to identify the triggering rainfall, document the flow behaviour, and estimate surface flow velocity and flow rate using Particle Image Velocimetry algorithms. Moreover, the seismic signal generated by the debris flow revealed a peculiar frequency spectrum compared to regular streamflow. These results show that even a relatively simple monitoring system may provide valuable data on real debris flow events

    Impact of different exposure models and spatial resolution on the long-term effects of air pollution.

    Get PDF
    Abstract Long-term exposure to air pollution has been related to mortality in several epidemiological studies. The investigations have assessed exposure using various methods achieving different accuracy in predicting air pollutants concentrations. The comparison of the health effects estimates are therefore challenging. This paper aims to compare the effect estimates of the long-term effects of air pollutants (particulate matter with aerodynamic diameter less than 10 μm, PM10, and nitrogen dioxide, NO2) on cause-specific mortality in the Rome Longitudinal Study, using exposure estimates obtained with different models and spatial resolutions. Annual averages of NO2 and PM10 were estimated for the year 2015 in a large portion of the Rome urban area (12 × 12 km2) applying three modelling techniques available at increasing spatial resolution: 1) a chemical transport model (CTM) at 1km resolution; 2) a land-use random forest (LURF) approach at 200m resolution; 3) a micro-scale Lagrangian particle dispersion model (PMSS) taking into account the effect of buildings structure at 4 m resolution with results post processed at different buffer sizes (12, 24, 52, 100 and 200 m). All the exposures were assigned at the residential addresses of 482,259 citizens of Rome 30+ years of age who were enrolled on 2001 and followed-up till 2015. The association between annual exposures and natural-cause, cardiovascular (CVD) and respiratory (RESP) mortality were estimated using Cox proportional hazards models adjusted for individual and area-level confounders. We found different distributions of both NO2 and PM10 concentrations, across models and spatial resolutions. Natural cause and CVD mortality outcomes were all positively associated with NO2 and PM10 regardless of the model and spatial resolution when using a relative scale of the exposure such as the interquartile range (IQR): adjusted Hazard Ratios (HR), and 95% confidence intervals (CI), of natural cause mortality, per IQR increments in the two pollutants, ranged between 1.012 (1.004, 1.021) and 1.018 (1.007, 1.028) for the different NO2 estimates, and between 1.010 (1.000, 1.020) and 1.020 (1.008, 1.031) for PM10, with a tendency of larger effect for lower resolution exposures. The latter was even stronger when a fixed value of 10 μg/m3 is used to calculate HRs. Long-term effects of air pollution on mortality in Rome were consistent across different models for exposure assessment, and different spatial resolutions

    Flood Routing Efficiency Assessment: an Approach Using Bivariate Copulas

    Get PDF
    Flood control reservoirs are widely recognized as effective structural practices in order to mitigate the flood risk in natural watersheds. Nevertheless, the flood frequency distribution in the downstream reach is strongly affected by a certain number of characteristics of the upstream flood hydrographs. When a direct statistical method is utilized, a multivariate approach should therefore be utilized to accurately assess reservoir performances. In this paper, a flood frequency distribution of the routed flow discharge is derived from a bivariate joint distribution function of peak flow discharges and flood volumes of hydrographs entering the reservoir. Such a joint distribution is constructed by using the copula approach. Reservoir performances are also exploited to categorize event severity and to estimate their bivariate return periods. The method is applied to a real-world case study (Sant’Anna reservoir, Panaro River, northern Italy), and its reliability is verified through continuous simulations. Bearing in mind the popularity that design event methods still have in practical engineering, a final evaluation of the performance assessment achievable by simulations of synthetic hydrographs derived from a flood reduction curve is finally proposed

    Hydroclimatic Variability and Land Cover Transformations in the Central Italian Alps

    Get PDF
    Abstract: Extreme streamflow nonstationarity has probably attracted more attention than mean streamflow nonstationarity in the assessment of the impacts of climate change on the water cycle. Nonetheless, a significant decrease in mean streamflow could lead to conditions of scarcity of freshwater in the long-term period, seriously compromising the sustainability of the demand for civil, agricultural, and industrial uses. Regional analyses are useful to better characterize an area’s nonstationarity, since a clear trend at a global scale has not been detected yet. In this article, long-term and high-quality series of streamflow discharges observed in five rivers in the Central Italian Alps, including two multicentury series and two new precipitation and streamflow series not analyzed before, are investigated to statistically characterize individual trends of mean annual runoff volumes. Nonparametric pooled statistics are also introduced to assess the regional trend. Additional climatic and nonclimatic factors, namely, precipitation trends and land cover trans-formations, have also been considered as potential change drivers. Unlike precipitation, runoff volumes show a marked and statistically significant decrease of −1.45 mm/year, which appears to be homogeneous in the region. The land cover transformation analysis presented here revealed extensive woodland expansions of 510 km2 in 2018 out of the 2650 km2 area measured in 1954, representing 38% of the area investigated in this study: this anthropic driver of enhanced hydrologic losses can be recognized as an additional likely cause for the regional runoff volume decrease
    corecore